Proper orthogonal decompositions in multifidelity uncertainty quantification of complex simulation models
نویسندگان
چکیده
We investigate uncertainty propagation in the context of high-end complex simulation codes, whose runtime on one configuration is on the order of the total limit of computational resources. To this end, we study the use of lower-fidelity data generated by proper orthogonal decomposition-based model reduction. A Gaussian process approach is used to model the difference between the higher-fidelity and the lower-fidelity data. The approach circumvents the extensive sampling of model outputs – impossible in our context – by substituting abundant, lower-fidelity data in place of high-fidelity data. This enables uncertainty analysis while accounting for the reduction in information caused by the model reduction. We test the approach on Navier-Stokes flow models: first on a simplified code and then using a scalable high-fidelity fluid mechanics solver Nek5000. We demonstrate that the approach can give reasonably accurate while conservative error estimates of important statistics including high quantiles of the drag coefficient.
منابع مشابه
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
In many situations across computational science and engineering, multiple computational models are available that describe a system of interest. These different models have varying evaluation costs and varying fidelities. Typically, a computationally expensive high-fidelity model describes the system with the accuracy required by the current application at hand, while lower-fidelity models are ...
متن کاملMultifidelity Uncertainty Propagation via Adaptive Surrogates in Coupled Multidisciplinary Systems
Fixed point iteration is a common strategy to handle interdisciplinary coupling within a feedback-coupled multidisciplinary analysis. For each coupled analysis, this requires a large number of disciplinary high-fidelity simulations to resolve the interactions between different disciplines. When embedded within an uncertainty analysis loop (e.g., with Monte Carlo sampling over uncertain paramete...
متن کاملModel Order Reduction
This chapter presents an overview of Model Order Reduction – a new paradigm in the field of simulationbased engineering sciences, and one that can tackle the challenges and leverage the opportunities of modern ICT technologies. Despite the impressive progress attained by simulation capabilities and techniques, a number of challenging problems remain intractable. These problems are of different ...
متن کاملDimensionality Reduction for Uncertainty Quantification of Nuclear Engineering Models
The task of uncertainty quantification consists of relating the available information on uncertainties in the model setup to the resulting variation in the outputs of the model. Uncertainty quantification plays an important role in complex simulation models of nuclear engineering, where better understanding of uncertainty results in greater confidence in the model and in the improved safety and...
متن کامل The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study
Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Comput. Math.
دوره 91 شماره
صفحات -
تاریخ انتشار 2014